Key Action 2 – Erasmus+ Strategic Partnerships for School Education Cooperation for Innovation and the Exchange of Good Practices

ENHANCING DIFFERENTIATED INSTRUCTION AND COGNITIVE ACTIVATION IN MATHEMATICS LESSONS BY SUPPORTING TEACHER LEARNING (EDUCATE)

Utrecht, 7 February 2019

Combining Differentiation and Challenge in Mathematics Instruction: A Case from Practice

SEÁN DELANEY & ANN MARIE GURHY

ACKNOWLEDGEMENTS

• This project, entitled "Enhancing Differentiated Instruction and Cognitive Activation in Mathematics Lessons by Supporting Teacher Learning (EDUCATE)", has been funded with support from the European Commission. This publication [communication] reflects the views only of the author(s), and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Theoretical Framework

- Mathematical Task Framework (Stein & Smith, 1998)
- Differentiating Instruction (Tomlinson, 2000)

Research Question

 What steps taken by the teacher supported differentiation and maintained or modified the challenge of the task?

Task

Alex uses identical tiles to make different sized chair designs for a school art project. The pictures on the sheet show the first three designs created, size 2, size 3 and size 4. Alex wanted a rule that would help work out the number of tiles needed for a chair of any size.

Q 1

- (a) If Alex wanted to create a size 5 chair, what would it look like? Can you draw it or use other materials to represent it? How many tiles would be used?
- (b) Work out the number of tiles needed for the size 6 and size 7 chairs. Explain how you did this.
- (c) Draw or make the size 1 chair. How many tiles did you need?

Q 2

(a) Do you notice any pattern between the chair size and the number of tiles needed each time? Discuss this pattern with your partner(s).

Q 3

- (a) Alex wanted to create a size 20 chair. Talk with your partner(s) about a rule that would help Alex work out the number of tiles needed for this chair.
- (b) Would this rule work for the previous chair sizes?
- (c) If yes, write out this rule in words.
- (d) Discuss if it would work for a chair of any size.

Q 4

(a) Could you re-write this rule using symbols/letters?

Q 5

(a) Use the rule to calculate the number of tiles needed for a "size 50" chair?

Method

- 4 data sources: teacher's planning notes, task, children's work, videos of lessons
- Focus: analysis of task and video of maths lab class implementing the task
- Open Coding informed by the theoretical framework

FINDINGS (1)

- Task is at level of "Procedures with Connections" (find a rule, compare solutions) & "Doing Mathematics" (non-algorithmic thinking)
- Task provided for differentiation by having multiple entry and exit points
- Teacher actively guided students
 - Choice of task and planning (enablers and extenders)
 - Clear instructions to students
 - Students attention directed to relevant ideas of concepts
 - Ideas that would support students were highlighted
 - Students questioned for clarification
 - Challenge for students increased
 - Students had time to think

Findings (2)

- Suitable classroom norms established
 - Confusion accepted on way to learning
 - Talking about mathematics
 - Manipulative materials available
 - Solutions represented in visual form
- Students acted as resources for each other's learning
 - Opportunities to share solutions
 - Repeat, revoice, explain
 - Analyse and compare solutions and ideas
 - Clarify ideas using words & representations